skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dube, Lacie"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Using sunlight to produce hydrogen gas via photocatalytic water splitting is highly desirable for green energy harvesting and sustainability. In this work, Mn 2+ doped 1-dimensional (1D) CdS nanorods (NRs) with Pt tips ( i.e. , 1D Mn:CdS-Pt NRs) were synthesized for photocatalytic water splitting to generate hydrogen gas. The incorporation of Mn 2+ dopants inside the 1D CdS NRs with a significantly longer lifetime (∼ms) than that of host excitons (∼ns) facilitates charge separation; the electron transfer to metal Pt tips leads to enhanced photocatalytic activity in water splitting redox reactions. The as-synthesized Mn 2+ doped CdS NR-based photocatalyst generated an order of magnitude greater yield of hydrogen gas compared to the undoped CdS NR-based photocatalyst. The enhanced charge transport from the long lifetime excited state of Mn 2+ dopants in light harvesting semiconductor nanomaterials presents a new opportunity to increase the overall photocatalytic performance. 
    more » « less
  2. null (Ed.)
    Lead-free perovskites and their analogues have been extensively studied as a class of next-generation luminescent and optoelectronic materials. Herein, we report the synthesis of new colloidal Cs 4 M( ii )Bi 2 Cl 12 (M( ii ) = Cd, Mn) nanocrystals (NCs) with unique luminescence properties. The obtained Cs 4 M( ii )Bi 2 Cl 12 NCs show a layered double perovskite (LDP) crystal structure with good particle stability. Density functional theory calculations show that both samples exhibit a wide, direct bandgap feature. Remarkably, the strong Mn–Mn coupling effect of the Cs 4 M( ii )Bi 2 Cl 12 NCs results in an ultra-short Mn photoluminescence (PL) decay lifetime of around 10 μs, around two orders of magnitude faster than commonly observed Mn 2+ dopant emission in NCs. Diluting the Mn 2+ ion concentration through forming Cs 4 (Cd 1−x Mn x )Bi 2 Cl 12 (0 < x < 1) alloyed LDP NCs leads to prolonged PL lifetimes and enhanced PL quantum yields. Our study provides the first synthetic example of Bi-based LDP colloidal NCs with potential for serving as a new category of stable lead-free perovskite-type materials for various applications. 
    more » « less
  3. null (Ed.)